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Uncertainties in predicted radionuclide-body burdens and doses from

discrete stochastic source terms

J.R. Kercher and W.L. Robison, Environmental Sciences Division, L.-524, Lawrence Livermore

National Laboratory, University of California, P.O. Box 808, Livermore, California 94550

Abstract-Expressions are derived for the expectation and uncertainty of body burdens and doses
calculated from a linear model of environmental transport and human metabolism in terms of
expectation and uncertainty in inputs. The inputs were assumed to be discrete stochastic random
variables. Three cases are compared to determine the relationship of the expectations and
uncertainties under varying assumptions. In the Constant Input case, the input is selected
randomly at the outset of the simulation period [0, T] from the distribution to which the population
is exposed and then is held constant throughout [0, T]. In the two time-varying cases, it was
assumed that N discrete stochastic exposures to the input were made; each exposure was constant
during each time interval of length T/N. In one case (Random), the exposures were assumed to be
uncorrelated, and in the other (Autoregressive), they were assumed to be partially correlated with
autocorrelation coefficient @. The expectation values of the body burdens and doses in the
Constant Input case were identical to those in the Random case. The uncertainties of the body
burdens and the doses in Constant Input case were identical in the limit of Rapid Metabolism to
those of the Random case. In the limit of Slow Metabolism, the uncertainties of the body burdens
and the doses in the Constant Input case were N1/2 and (3N/4)1/2, respectively, greater than those
in the Random case. If the stochastic inputs are stationary in the Autoregressive case, the
expectation values of the body burden and the dose equal those for the Constant Input case. For
stationary inputs, the ratio of the uncertainty of the body burden in the Autoregressive case to the
uncertainty in the Constant Input case is 1 in the Rapid Metabolism limit and {(1+a)/[(1-a)N]}-1/2
in the Slow Metabolism limit. Under the same conditions, the ratio of the uncertainty of the dose

in the Rapid and Slow Metabolism limits is 1 and {4(1+@)/[3(1-c)N]}-1/2, respectively. That is,



it is found that increasing the number of sampling periods decreases the uncertainty and increasing
the autocorrelation increases the uncertainty. In an example application for ingestion of 137Cs at
Bikini Island, a weak form of both Slow and Rapid Metabolism limits apply and give the result that
the uncertainty of the body burden in the Constant Input case is 18 time greater than the Random
case. For a=0.5, the uncertainty of the body burden in the Autoregressive case is 1.7 times
greater than the Random case. The smooth transition of the Autoregressive case from the Random
case to the Constant Input case is shown as & increases from 0 (completely uncorrelated and

random) to 1 (completely correlated and constant).

Introduction

Uncertainty in the fate and effects of radionuclides and other environmental pollutants is an
important consideration in any assessment of risk. This paper considers the problem of the
dependence of the output of models for computing body burdens of radionuclides and the
associated dose on the uncertainty in the inputs (or forcing function). If the inputs are constant in
time, this is not a difficult task because of the linear nature of the problem of exposure, body
burden, and dose. However, this paper considers the case that the inputs or exposure may change
over time with some uncertainty. This case requires that care must be used in the analysis.

There have been several discussions in the literature of the related problem of uncertainty in
constant parameters of models for computing body burden of radionuclides (e.g., Garten 1980;
Marivoet and Van Bosstraecten 1988; Breshears et al. 1989). Many authors have recommended a
Monte Carlo approach to this problem, whether as a simple random design (Schwarz and Hoffman
1980; Matthies et al. 1981; O'Neill et al. 1981; Kercher and Anspaugh 1991) or as a stratified
design such as Latin hypercube (Iman et al. 1981; Helton and Iman 1982; Iman and Shortencarier
1984). In the Monte Carlo approach, each parameter of the model is sampled from its distribution
once before each run. By running the model many times, a distribution of the output results may

be obtained. Itis important to note that in most previous dose assessment schemes, each parameter



is sampled only once per run. That is, the parameter is assumed to be constant during the run. A
notable exception is the work of Unnikrishnan and Prasad (1987), who considered the case of
continuous random fluctuations in air activity inputs in lung-model calculations. Their analysis
will be used in the calculations in a companion paper on uncertainties due to continuous stochastic
inputs (Kercher 1992).

The analysis to follow was motivated by considerations of the model developed by Martin
and Bloom (1980) for the Nevada Applied Ecology Group (NAEG) for application to the Nevada
Test Site (NTS). For the NAEG model, Martin and Bloom assumed that a reference man as
defined by the International Commission on Radiological Protection (ICRP) (ICRP 1975) was
living in a desert environment contaminated by Pu (grassland-shrubland vegetation), breathing air
contaminated by soil resuspension, and eating vegetables that he had grown himself in the
contaminated environment and milk and beef from cattle pastured in the same contaminated
environment. All concentrations of radionuclides in air and foodstuffs are modeled as proportional
to the soil concentration. The soil concentration is assumed to be constant over the entire farm.
That is, in the NAEG model there is an inhalation pathway from soil through resuspended particles
in air to respiratory intake and there are ingestion pathways from soil to vegetables to man, from
soil to pasture to milk, and from soil to pasture to meat. Ng et al. (1988) have extended the NAEG
model to other radionuclides for use by BECAMP (Basic Environmental Compliance and
Monitoring Program), which succeeded NAEG at the NTS. In this paper, three types of exposure
to a contaminated environment are discussed. As an application of these results, the example of
ingestion of 137Cs in foodstuffs at Bikini Island is given after the derivations.

There are many sources of variation in the Man's intake, including day-to-day variation in
ingestion of differing types of foodstuffs or of foodstuffs having within-type variation due to being
grown in different parts of the farm; month-to-month variation due to differences in weather
throughout the year or differences in the Man’s activities at the farm; and year-to-year variations
due 1o differences in weather, the Man's activities, or possible relocations of the Man’s living site.

In this paper, let us consider only discrete fluctuations, and these will be classified into three cases:



Constant Input Following Initial Random Exposure (or Constant Input for the sake of brevity),
Random, and Autoregressive. The continuous case is discussed in a companion document
(Kercher 1992). For the Random and Autoregressive cases, assume that the simulation period is
divided into N intervals of equal duration. In the Constant Input case, the simulation period itself
is one interval and undivided. In all three cases, assume that the variation within. intervals is
negligible. The only significant variation occurs between intervals at the transition from one
interval to another. That is, the distribution of the random variable is sampled once at the
beginning of each time interval. In the Random case, the soil concentrations from one interval to
the next are uncorrelated. In the Autoregressive case, the soil concentration from one interval to
the next have correlation coefficient . For example, for the Man living on the farm, it might be
imagined that the contamination on the farm is relatively homogeneous, but that there is regional
variation that is sampled by the Man’s periodic relocation. In the Constant Input case, the initial
location and exposures are decided upon (sampled), and then for the duration of the simulation the
exposure remains constant. The Constant Input case is the easiest to simulate.

The goals of this paper will be to compare the three cases by relating the body burdens,
doses, and their uncertainties to each other. These comparisons will be made for the limits of
Rapid and Slow Metabolism to simplify the algebra. However, it should be emphasized that the
solutions that are given here could be used to make comparisons for arbitrary metabolism and
radioactive decay rates. Closed-form solutions are given to the general problem in each of the three
cases. These solutions could be used numerically to relate expectations and uncertainties between
the three cases for specific radionuclides. As a secondary goal, the inputs for the Constant Input
case will be determined such that the outputs reproduce the expectation and uncertainties of the
Random and Autoregressive cases. These results are in Appendices C and E. For example, it will
be shown how to chose the expectation and uncertainty in the soil concentration so the Constant
Input case would produce the expectation and uncertainty of the body burden in the Random case.
The utility of such information is that it is significantly easier to program the Constant Input case

on the computer than it is to program the Random or Autoregressive cases.



For the purposes of this analysis, the uncertainty in the other model parameters will be
ignored. However, in a specific assessment of a particular situation using the Monte Carlo
method, one would include the uncertainty in model parameters as well as model inputs or source
terms.

The basic metabolism model for man of the ICRP (ICRP 1979) calculates body burdens of

a particular radionuclide with the equation

dyi <
—dzt—=z aijyj +F,'(t) (1)
J=1

where the a;j are constant coefficients of transfers from compartment j to i (d-1), y; is the activity
burden of the internal compartment i (Bq), and F;(¢) is the intake (inhalation or ingestion) of the
radionuclide to compartment i (Bq d-1), and n is the number of compartments in the man model.
The exception to this model is that of the alkaline earths (ICRP 1973) in which the ajj are time-
dependent. In the case of only one compartment and for F(f) a random variable, eqn. 1 is the
Langevin equation; a discussion of its subtleties can be found in standard references on stochastic
processes (e.g., Wang and Uhlenbeck 1945; Prabhu 1965). In the discussion that follows, the
mathematical details are simplified by assuming the matrix coefficients are constant, but suitable
generalizations can be made for the time-dependent case. After eqn. 1 is solved, the cumulative

internal dose for the kth organ Hy(f) (Sv) is then given formally by

n

H{T)= ), f Byj yAr)dt (2)

j=1

where the Byj (Sv d-! Bq -1) are proportional to the SEE coefficients (ICRP 1979) for the kth
target, jth source organ. So that one may write compact expressions, matrix notation will be used;

for example eqn. 1 becomes



dy=ay+ Ry (3)

where the ajj are the matrix elements of A', y;(¢) the vector element of y, and F;(r) the vector
elements of F.

The discussion in ICRP (1979) concentrates on an exposition of the A' matrix. Other
studies concentrate on radionuclide transport in the environment and delivery to man, i.e., the
forcing function F(r) (Hoffman et al. 1984; Whicker and Kirchner 1987; Whicker et al. 1990).
Some modeling efforts model both the A' matrix and the F vector (Martin and Bloom 1980;
Kercher and Anspaugh 1991). Some uncertainty analyses have concentrated on uncertainties in A'
(Schwarz and Dunning 1982), whereas others concentrate on uncertainties in F (Unnikrishnan and
Prasad 1987; Breshears et al. 1989). In the discussions that follow, the analysis of uncertainty is

restricted to time-varying, stochastic F.
Development of the body burden equation

For constant matrix A', the formal solution to egn. 1 is

T

y(M =e”f eATHn)dr + eATy(0) . (4)

For this discussion, consider the type of model in which the form of Fi(f) is given by

F{) = G{1) c{1) (5)

where G is the ith component of the vector transfer function that models the transfer from the soil-
to-man compartment { and c;(¢) is the concentration of the radionuclide at the soil surface at time ¢.

Models used by Martin and Bloom (1980), Kirchner et al. (1983), Kirchner and Whicker (1984),



and Kercher and Anspaugh (1991) are examples of this type. For convenience, suppose that (1) G

is constant in time and (2) all radionuclides were deposited at time =0, then assume that
cdf) = Cl1) et (6)

where Cg(1) is the time dependence of exposure independent of radioactive decay and A is the
radioactive decay rate of the radionuclide. Introduce a new matrix A equal to A'+ AI where L is
the identity matrix. See Appendix A for a discussion of the properties of the matrices A and A'.

Also assume y(0) = 0. Using eqns. 5, 6, and A.3, then eqn. 4 becomes

T

y(T) = e‘”e”j eA G C{y)dr . (7a)

0

For some of the calculations to follow it is more convenient to write eqn. 7a as

r
_)’k(T)= 2 ‘{kaelirf e*(‘i*l)’ ‘{’ﬁl G C_\-(t)dt (7b)
jl=1 S

where the transformation from eqn. 7a to eqn. 7b is by use of eqn. A.9. (Appendix A contains the
definitions of 4;and ¥})).

In eqns. 7a and 7b, a man is exposed over time T to a continually changing, random soil
environment contaminated by a radionuclide. That is, Cg(¢) is treated as a random variable. To
find the uncertainty in dose due to this exposure, consider an ensemble of such men, each exposed
to his environment over time 7. The ensemble of men sample the contaminated environment and
produce a distribution of body burdens and doses over the ensemble. The usual functions are used
here to characterize such distributions and their mathematical properties are given in Appendix B.
As noted above, there are uncertainties in A and G and appropriate Monte Carlo methods for

analyzing those uncertainties should be used (Iman and Shortencarier 1984). In the discussion



here, let us concentrate on the uncertainties in Cg(f). Let us consider three separate cases: Constant
Input, Random, and Autoregressive time series. The first two cases are special cases or limits of
the third, but, in the interests of clarity of expression, let us discuss each of them separately. In

each case, example applications are discussed and the term sample is defined.

Case of Constant Input Following Initial Random Exposure

Application

The case of Constant Input Following Initial Random Exposure (or Constant Input case)
corresponds to the situation in which the initial exposure is random but then stays so highly
correlated during the simulation period that the exposure may be assumed to be constant. For
example, Martin and Bloom (1980) assumed that the exposure to contaminated soil was constant
during the simulation period (50 years). In the context of their model, this would correspond to
the radionuclide being spread over the landscape as a smooth, slowly varying spatial function and
once the Man chooses a location, he remains in that location and grows his food in that location for
the entire time of simulation. It is assumed in this case that the normal variation to which the Man
is exposed living on the farm is a small, negligible variation compared to the variation he would
experience if the farm were relocated. Thus, it is assumed that the contamination is constant over
the farm, but that if the farm were located elsewhere in the region there would be a different level
of contamination. The randomness is for an ensemble of Men each randomly choosing a different
farm in the contaminated region. In the Bikini example given below, the Constant Input case
corresponds to each Marshallese ingesting constant levels of 137Cs over the simulation period after

initially choosing this level randomly.



Analysis
In the Constant Input case, the Man is continuously exposed to the distribution of the
random variable C,(t) over the time domain of simulation [0,7], but the values of the exposure are

so close to the initial value that one may take as a good approximation that

Cdy) = C0) . (8)

As a result, the most important value of Cg(#) occurs at time =0 and it (Cs(0)) defines the one and
only sample of the distribution of the random variable. Each Man of an ensemble of Men chooses
at time =0 the location for his contaminated environment. The mean and standard deviation of the
samples or values from the distribution of Cs(0) are found over the ensemble and are denoted as

ccr and ocy, respectively,

ccr = E(CH0)) (9a)
ocr = D(C{0)) (9b)

where E is expectation function and D the standard deviation function (for the uncertainty). These
functions will be used with the usual definitions (e.g., Cramer 1955). (Appendix B provides a

discussion of the properties of these statistics.) The solution to egn. 1 becomes for constant matrix
A
T
y(T) = eATC0) e”j eM G dt (10a)
0
or

¥y(T) = e ATC{0)(eAT-T)A! G . (10b)

Using eqns. B.1 through B.6, one finds the mean and standard deviation of yx(#) for the Constant

Input case to be



-

BydT)= e-*TECLO)[(eAT-T)A-! Gk = e*Tcql(eAT-T)A-1 G (1))

and

DyT)) = eATD(CLO)|(eAT- 1) A1 Gl = 2T og[(eAT-T)A' Gl (12)

where c¢y is the mean of C(0) and oy is the standard deviation.
Calculate the cumulative dose at time T by integrating egn. 10b in eqn. 2. The expectation

and standard deviation are found as before:

H{T)= C{0) {B A“[(A A (elaanr g = 1} G} (13)
k

HHAT) = cq {B Al [(A ) elaanr_y) 4 1= 1] G} (14)
k

DHT) = oc,{B A-*[(A _Aa)Helaanr_y) o+ 1"_1;‘ 1} G} . (19)
k

Random case

Application

The idea behind both the: Random and Autoregressive cases is that the inputs vary over the
simulation period with a certain amount of uncertainty. In the Random case, the uncertainty from
one exposure period to the next is highly uncertain, whereas in the Autoregressive case, there are
correlations in inputs over the simulation period.

For both the Random and Autoregressive cases, suppose that the time period of simulation
Tis divided into N time intervals of length A=T/N. Suppose that for each of the N time intervals
the soil concentration Cy(¢) is highly correlated (constant) during that time interval but is random

from one time interval to the next. That is, one assumes that for practical purposes Cs(t) is

10



constant C; during the ith time interval. For the Random case, in each of the N time intervals, the
Ci is a random variable independent (uncorrelated) of any of the other C's. For example, if the
spatial distribution of the radionuclide were weakly varying on the landscape and the Man were to
move N times during the simulation period to new farms whose position were completely
uncorrelated with those of previous farms, then this would approximate the conditions for the
Random case. Each move would have to result in a new exposure to the environment independent
of previous exposures. Thus, the Man could not move close to his previous position, but instead,
would have to move a large, random distance away. In the Random case for the Bikini example
given below, daily total ingestion of 137Cs is derived from random samples of locally grown
foodstuffs and a daily randomized diet based on data from a survey of Marshallese eating habits.

In the case of occupational exposure, if the Man's work assignment were to change N
times over his working life with equal time intervals for each assignment, one would approximate
the Random case conditions. Alternatively, if conditions on the landscape were to change at
random from one small time interval to the next, say, day to day, or month to month, one might
also approximate the conditions for the Random case. Seasonality is a special case of changing
environmental conditions that is beyond the scope of this paper. Only nonseasonal effects will be
considered here.

For the Random case, each Man in an ensemble samples the substrate concentration (soil
for NAEG model and vegetation for Bikini application discussed below) N times during simulation
length T. So, samples are the values of the random variables C;. To find the mean value and the
standard deviation of C, take the expectation and standard deviation over the ensemble. Assume
that the mean and standard deviation are independent of i or the time of sampling; then the

time-series of C; is referred to as stationary. The mean and standard deviation are denoted

cr= E(C) (16a)

and

ORp = D(C,‘) . (16b)



Analysis

Under assumptions of the Random case, eqn. 7a integrates to

y(T) = e-AT (AT (- A")(I—e‘“)[‘i Ci e"‘"{l G. (17)

=1

Take the expectation of egn. 17, using eqn. 16a, to get the mean of yg, i.e.,

Hy(T) = e-*T cg[A-! (eAT-1)G]; . (18)

Details of the calculation are in Appendix C.
Now consider the standard deviation for the Random case. Begin with eqn. 7b and employ

the Random case assumptions outlined above to get

D¥y)=ope-2AT Z Pij Pim e~ B+ 1) T ‘I’ﬁl ‘I’,;: G: G,

Jlmur=1
(1—e'“iAXI—e‘M) (1-elki+m)T) (19)
Hj Hm (e-(wi+nm)a_1)

See Appendix C for details.
The dose calculation of the Random case is performed by integrating either eqn. 17 or C.3b

in eqn. 2. to find

HAT) =i Ci {B(_A-lX-A+A 1) [e““(l—eM)%—(I—eM) e(a-2)an e-"AA]G} (20)
i=1 k
with
HH{T) = cg {B (~A-)(-A+A IT‘[(l-e-H)i-(x — eAT) g-AT ]G} (21)
A k

and

12
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DYH) = o2 By BinWi ¥ 1
Rj.l.h%.m.q g hp#l l‘p(#l“'l)(ﬂp'*'l)

(1-eraf i lp 1-e~ 244N +(1-—eM)u—l(l-—e-ﬂpA)e—(u,+l)AN M_
AT el A Epm

Wim g Gm G,

(22)
+(1-e4) l_;L([_e—#:A) o+ Jan L“M

e("v-#l)d— |

o (1met8) e~ Do (1e-1r4) oy + Ay Le Y
e~(Hetm)A_]

Comparison of the Random and Constant Input cases

In comparing the Random and Constant Input Cases, first consider the body burdens.
Note that eqn. 18 is exactly the same form for E(yx) that was determined for the Constant Input

case, eqn. 11. Thus for E(Cs(0)) = E(C;) or ccr= cr
E()’k. Constant lnpul) =E()’k. Random) . (23)

Similarly, the expectation of the dose E(Hy) for the Constant Input case, eqn. 14, is exactly the

same as that of the dose E(H;) for the Random case, eqn. 21, assuming that c¢cr=cg , i.e.,
E(Hk, Constant Inplu) = E(Hk Random) . (24)

To compare the Random case uncertainties of the body burden and the dose, eqn. 19 and
22, respectively, with the uncertainties in the Constant Input case, eqn. 12 and 15, respectively,
consider these equations in two opposite and extreme limits. The first limi.t is for extremely rapid
metabolism of the radionuclide in all of Man's compartment organs; the second limit is for
extremely slow metabolism in all compartments. These limits are taken for purposes of

simplifying the comparison of these uncertainties. In any particular situation regarding a particular

13



radionuclide, one would use the eqns. 19, 22, 12, and 15 directly to make a comparison or to

determine the adjustments necessary to simulate discrete fluctuations with a constant input.

Rapid Merabolism limit
First, consider the variance of the body burdens. In the Rapid Metabolism limit, all y; are
large, such that y; A >> 1. That is, the residence time of the radionuclide (7;=1/4;) in each

compartment i is much less than the time interval A. In this limit, egn. 19 becomes
Dy, Random) = OR e"lr[—A_l G]k . (25)

See Appendix C for details. In the same limit, eqn. 12 goes to the same expression assuming that
ocrequals og. So in the limit of Rapid Metabolism and for og = 0y, the uncertainty of the body
burden for the Random case D(yx Random) €quals the uncertainty of the body burden in the
Constant Input case D(yk, Constant Inpur)- In the Rapid Metabolism limit, the body burden at time T
is determined by the input to the very last A time interval before T. Thus, even though there are N
intervals, only one sampling, the last one, determines body burden. Hence the statistics of body
burden for the Random case in the Rapid Metabolism limit are the same as those of the Constant
Input case, which is also determined by one sample.

Next consider the variance of the dose. To compare the variance of the dose in the
Constant Input case with the Random case in the Rapid Metabolism limit, let us also assume that
the decay is rapid ( AA >> 1). That is, the halflife of the radionuclide is much less than the time

interval A. Then the variance of the Constant Input dose, eqn. 15, approaches

D{Hy, Constans ,npm)e%C—'[B (a+a1)'Gl . (26)

In this limit, the variance of the Random Dose, eqn. 22 also approaches eqn. 26 if og =0ocy.

Thus, in the Rapid Metabolism limit and for og equal to oy, the uncertainty of the dose for the

14



Random case D(Hy pandom) €quals that for the Constant Input case D(Hk, Constant Inpup)- In the
Rapid Metabolism and rapid decay limit, the dose at time T is determined during the very first A
time interval. So even though there are N samples in the Random case, only one sample, the first
one, is important in fixing the dose. Hence the statistics of the dose in the Random case is the

same as that for the Constant Input case.

Slow Metabolism limit
Now consider the limit of Slow Metabolism. In this limit, all the y; are small, such that
Ui T << 1. Thatis, the total simulation time T is much less than the residence times (7=1/4;) of

the radionuclide in each compartment i. First, examine the uncertainty in the body burdens. In

Appendix C, this limit is found to be

ORr eATT

o Gy . (27)

D(yk, Random) =

In the Slow Metabolism limit, the Constant Input uncertainty (eqn. 12) becomes

D()’k, Constant Inpul) - Oci Te*T Gy . (28)

Thus, in the limit of Slow Metabolism and for o = o¢y

D(,Yk Constant lnpur)
: . 29
N )

D(yk, Random) =

Consider next the uncertainty in the dose. In addition to the Slow Metabolism limit, let us
also assume that AT << 1. In this limit, the uncertainty of the dose in the Random case (eqn. 22)

approaches

15



~

D(Hy, Random) = Or[B Gli (30)

T2
; .
In this same limit, the uncertainty of the dose for the Constant Input case, eqn. 15, approaches

2
D(Hy, constant tnput) = Oci{B Gle TT : (31)

So for Slow Metabolism and decay,

D(Hk. Random) = O'l:c—' ﬁD(Hk, Constant lnpur) . (32)

Autoregressive case

Applicarion

In the Autoregressive case, the input or source term at time ¢ is partially dependent or

correlated with the input at time t-A4 even though there may be a random component to the input.

Recall that in the Random case, the input at time 1 is completely independent of the input at -4,

and in the Constant Input case, the input at time ¢ is completely dependent on the input at t~A with

no random element. So the Autoregressive case is the transition between the Constant Input case

and the Random case. Said another way, the Constant Input case and the Random case are both

special cases of the Autoregressive case with the correlation either 1 or 0, respectively.

The most general linear model of random variable X for time series X;, the Autoregressive-

Moving Average (ARMA) model (Chatfield 1975; Kendall 1976), is given by

Xi=a1 Xy g+ 4 X g+ PoZi+PriZ_s+...+ P2 4 (33)

16



where X; is the random variable at time ¢ = (i-1)A for some integer i and Z; is another, independent
random variable at time ¢t = (i-1)A. The terms with the a’s as coefficients make up the
autoregressive part of the expression and the terms with the s as coefficients make up the moving
average part of the expression. For purposes of exposition here, the simplest autoregressive model
is sufficient. So consider the case of a first-order autoregression (also known as the Markov

scheme):

Xi=aX_1+ Z (34a)
or for the C; in egns. 17 and C.3b
Ci=aCi_1+ € (34b)

where €; is a random variable independent of C1 and g;j for i #j. The closed form expression for
yk will be derived for the simplest linear autocorrelation between successive samples. The derived
equations will contain the Random case and Constant Input case as special cases.

The application of the Autoregressive case to the problem of exposures at the NTS as
calculated by the NAEG model assumes that the soil concentration to which the Man is exposed at
time ¢ is correlated with that at r-A and constant over A. For example, if someone's work
assignment required him to move around the site from week to week such that any one move
resulted in changes in location less than that over which the contamination was spatially correlated,
then this could lead to serial correlation of exposure and the Autoregressive case would apply. In
the context of the farming assumptions of the NAEG model, examples of the Autoregressive case
could be constructed due to periodic relocation of the farm, migrant workers moving from farm to
farm, or movements within a large farm by one man. Construction of all these examples could be
made assuming some spatial correlation of contamination and movements less than the
characteristic length of the contamination. In the Bikini example given below, we only assume that
there is some correlation in the day-to-day ingestion of 137Cs arising either from day-to-day

correlation in diet or in concentration of 137Cs in food or from both.
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In the Autoregressive case as in the Random case above, it is assumed that the time-series
of the source-term inputs or exposures are stationary, meaning that the statistics of C; are the same
as those of Cj for any i and j. The results of this assumption are derived below. Finally, the
samples for the Autoregressive case are the values of the random variable C;, just as in the Random

casec.

Analysis

Note that it is well known that the autocorrelation function between C; and Cix is o&. In
particular, the autocorrelation between neighboring time intervals is ez This is shown in Appendix
C for the particular assumptions used here. Applying eqn. 34b to the C;.; term in eqn. 34b

successively i~2 times, one finds

i-2 i
Ci=ai~'Ci+ Y dleg_j=al"1Ci+ Y, ai-ig i>1. (35)
j=0 j=2

First, consider the body burdens. In the Autoregressive case, the equation for the body

burden output (eqn. 17) becomes

i-2
y(T) = eATeAT(_A-1) (1 - eA4) {cl e-Ady i [a"-lcl +2, o e,-_,-] e-A4 .-} G .(36)

i=2 j=0
Calculate the expectation value of eqn. 36 using E(C]) = ca and E(gi_j) = €m 10 get

Hyi)=e-A TeAT-A=1)(1-eAd)e-A4[cq (1-aN -AT) (1 - ae-Aa] s

(37)
Em_((-AA_e-AT)(1e-AA]"_ (g e-AA _oN o-AT{1-gx e—AA)'l)] G
k

1-«a
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Note that in the limit a — 0, £y — ¢4, and c4 — ¢g, one recovers eqn. 18 for the Random case.
Also, note that in the limit a = 1, €4 = 0, and c4 — cyc, one recovers eqn. 11 for the

Constant Input case. More generally, for the condition
Em=ca(l - ) (38a)

and cA equal to ccy or cR, eqn. 37 collapses to eqn. 11 or eqn. 18, respectively. However, for an

arbitrary value of £m/ca and 0 < a < 1, the expected value in the Autoregressive case differs
from the Random and Constant Input cases. Equation. 38a can be derived by taking the
expectation of eqn. 35 and assuming that the inputs are stationary, which means that the statistics
of the distribution of any C; must be equal to those of any other Cj. Likewise, by applying this

principle for the D2 function operating on eqn. 35, it is found that
ot=02(1-a?). (38b)

To calculate the uncertainty in the distribution of yg in the Autoregressive case, begin with

eqn. C.3b and manipulate as shown in Appendix E to get

D(y;) = [e—“'eA T([—e-A A) A (1= aMe-AT)(1 - ae-a4)! GE a2

) - —e A - _e-HiA |
+0t Y, PehT ¥ GAz ™ Tyl g loeH elw + ) A
Jbih =1 Hj Ui (l—ae“iAXI—ae#-'A)
e(“i"“‘)A—e(ﬂv'*#-‘)T .TGE“‘T—aNe#-'A
— el
l—e(“i*“")d eMA -a
T_ N N
T @EE ST (T LG (39)
el _ | - a2

Note that in the limit @ — 0 and o — 04, one recovers eqn. 19 for the Random case. Also,

note that in the limit @ — 1 and o¢ — 0, one recovers eqn. 12 for the Constant Input case. The
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use of eqn. 38b automatically enforces these conditions and results in the recovery of the Random
and Constant Input cases for o equal to 0 and 1, respectively. However, for an arbitrary value of
od0os and 0 < a < |, the expected value of D2 in the Autoregressive case differs from the Random

and Constant Input cases.

Now consider the calculation of the dose for the Autoregressive case. Integrate either eqn.

36 or E.3 in eqn. 2 to arrive at the expression for the dose to organ k

H=B (-A1)(A-2 IT‘[{M(A) (:A—)(l—a"" e-A4N) 1 MA) ela-2 1AM 1_agNe-aan)| ¢,
+ M2 (__)euz ele-ith — gN-i+1g-14Ns1))
+ M(A)ela-21)av eAAZ gle-iaa _ gN-is1 e—AA(NH))] G (40a)
where -
Mx)=(1-e<)(ex-of ' . (40b)

The expectation of the dose is then given by

HH) =B(-A"")(A-2 I)“[{M(A) (_—A—)(l—a"’ e-AaN) + M(A) ela-1 ‘)M(I—a”e-w)} A
( ) g4 —e—NM+M(}.){ae-M aNe-1an))

_ TG:E e(A_1 1AV (g-Ad _ o-NAA 1 M(A ) cr e-A4 —a”e““‘”})] G . (41)

To calculate the variance of the dose of the Autoregressive case, take D2 of the eigenvalue-

eigenvector form of eqn. 40a and find after manipulation
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DYH)=2 ¥ Bk Bnﬁ"’—’i{m(“”)d A)+M—um)e4u-+ﬂd~mm}

Limgpr

¥ ¥ GG

(ot A2+
¥im '"Pj Hmllg _ _ -4
+ O'EUEN By Bkjlllr_nﬂf {M 14 —A—Z—[R(e 214) 20Ne WR(E—G—A)
+e-2ANGNR(or2) + 1»1(,1)1‘4(-“,,)‘% -(Pvﬂ)AN[R(e(#H)A) — e wR(ﬁ‘;ﬁ)
- O.Ne#vANR(f_aﬁ) + el RN VR(ar 2)] + M(A.M—p,,,)i'—:e‘(lwl)AN

[R(e(l‘""")d) - aNe—MNR(f-”aﬁ} aNeF--AVR(f—aﬁ) + e(u«—l)ANaWR(a-Z)]

[ ("")P( _2) + Moty e-lnee Danpyyy)

. M(-p,,,)A'(—pq)e‘(“v*“"*w"N[R(e(”"*”‘)A) - aNeMR(fM) - d“’e“f‘WR(‘#f:i)

Y ¥ G,Gi
+e(#u+#q)4NamR(a'2)]} (”m‘; Xﬂq+ ) (42a)
where
Px)=1-aNexaN (42b)
and
R =2 (42¢)

l-x

Comparison of the Autoregressive case to Constant Input case

The Random and Constant Input cases have already been compared; therefore, the

Autoregressive case is compared only to the Constant Input case. To do this, compare the

formulae for the Constant Input case (eqns. 11 and 12 for the body burden and eqns. 14 and 15

for the dose) with the statistics formulae for the Autoregressive case (eqns. 37 and 39 for the body

burden and eqns. 41 and 42a for the dose). Note that for stationary inputs em=ca(1-a), the

expectation of the dose in the Autoregressive case eqn. 41 becomes the same as eqns. 14 and 21,

the expectations of the dose in the Constant Input case and Random case, respectively, for ca=ccr
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and cp=cg, respectively. Because of the complexity of the egns. 39 and 42a consider the two
limits of Rapid and Slow Metabolism. Recall that a secondary goal in this discussion is to
determine how to choose the mean and uncertainty of exposure for the case of Constant Input such
that the output of the Constant Input case matches the mean and uncertainty of the distribution of
other, more complicated cases, including the Autoregressive case. Appendix E discusses choosing

inputs for the Constant Input case to do this,

Rapid Metabolism limit
In the limit of Rapid Metabolism, the expectation values of the body burden yj for the

Constant Input case and the Autoregressive case are found to be related as

E(yk Auroregres.rive) - aN_l + CA(%E(I - QN—I) Ecgl' E(yk Constant lnput) (43)

which shows that under the stationary condition £,=cA(1-a) and for c4=ccy, the mean body
burden in the Autoregressive case equals the mean in the Constant Input case. Details of this
calculation are in Appendix E.

Now consider the uncertainty of the body burden in the Rapid Metabolism limit. In this
limit, it is shown in Appendix E that the uncertainties of the Constant Input case and the

Autoregressive case are related by

o; o(1 - cAN-Y)
Dz()’ ufore re:.n've)_)—A' aiN_l) +—£ D7(y onstant Input) (44)
k A g 0_(2:1 oi (l _ az) k, C Inp

which under the stationary condition for o¢? and for co=0¢ insures equality between

D(Vk.Autoregressive) and D(yx,Constant Input)-
To calculate the expectation of the dose H; in the Rapid Metabolism limit, assume that the

decay is rapid, too, i.e., let us assume AA >> 1. In Appendix E, the expectations of the dose in
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the Autoregressive case and Constant Input case are calculated for this limit. They are equal for
CA=CCI , even for nonstationary inputs.

Now consider the uncertainty in the dose for the Rapid Metabolism and rapid decay limit.
In this limit, in Appendix E it is shown that the uncertainty in the Autoregressive dose is equal to

the uncertainty in the Constant Input dose for o4=0(].

Slow Metabolism limit
In the limit of Slow Metabolism for the radionuclide in question, the expectation value of

the body burden yj for Constant Input case is related to that of the Autoregressive case by

E(yk Autaregres:ive) + ﬁ (1 (yk Consrant lnpu() (45)

CA(I a) l-a CA(l a)

ca CI

as shown in Appendix E. Under the stationary condition for &, and ca=ccy, E(yx, Autoregressive) 18
equal to E(yk,Constant Input)-
In the Slow Metabolism limit, one finds the uncertainty in the body burden yj for the

Constant Input case to be related to the Autoregressive case by

2 N

2 . 1 (L=o of B Ll -aV +2a

D (.Yk. Auloregre:nve) —)|: N2 - + oﬁ N2 (1_a)2 {N 1 (1 "2 (1 a )
o.2

‘ADz()’k. Constant Inpul) . (46)

%

See Appendix E for details. Under the conditions of stationary inputs, large N, and o4=0cy, this

equation becomes

D ()’k Autoregre::we)"[ N1 a] Z(Yk, Constant lnpul) . (47)
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Note that eqns. 46 and 47 have been derived for a < I such that 1T << 1-a and a¥—0; if these
conditions are violated, i.e., for a very close to 1, then one must use eqn. 39 instead of eqns. 46
and 47 to calculate D2(yy Auroregressive)-

The expectation of the dose for the Constant Input case in the Slow Metabolism (and decay)
limit is related to the Autoregressive dose by

E(Hk, Autoregre.m’ve) = E[_(E'l"——a) E(Hk. Consrant Inpu:) . (48)

Thus, both doses are equal under stationary conditions and ca=ccy.
The uncertainty of the dose for the Constant Input case in the Slow Metabolism (and decay)

limit is related to that of the Autoregressive case by

D(Hk Autoregres:ive) = O'c[((’li—-a) ‘V’;N D(Hk Constans lnPuI) (493)

which under stationary conditions and for ca=0¢y becomes

/ 41+ ai
D(Hk, Auroregres:ive) = m D(Hk Constant lnpul) . (49b)

Eqns. 49a and 49b are only valid for a not near 1; for & very close to 1, then one must use egn.

42a to calculate D(Huworegressive).
Example calculation of ingestion of 137Cs at Bikini Island
The analyses in this paper were originally motivated by the need to estimate uncertainty in

body burden and doses for various scenarios at the NTS as calculated by the NAEG model. At the

NTS, the dominant exposure pathway is inhalation of Pu. While it is possible to treat this situation
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as discrete exposures as outlined in the discussions above, situations for which the ingestion
pathway dominate are more suited for the discrete exposure analysis of this paper. The NTS
situation is treated as an example calculation in the companion paper on continuous exposures
(Kercher 1992). At the Bikini, Enewetak, and neighboring atolls, contaminated by nuclear
weapons testing, ingestion of contaminated foods is the dominant pathway and extensive data has
been collected upon which realistic calculations can be made. In the Marshall Islands, the largest
source of dose is 137Cs (Robison and Phillips 1989), which simplifies the model of metabolism.
The body burdens of 137Cs for female inhabitants of Bikini Island on Bikini Atoll will be the

example calculated below.

History of Bikini weapons testing and subsequent radioecological and dose-to-man investigations.

The United States conducted a nuclear test program at Bikini and Enewetak Atolls in the
Marshall Islands from 1946 to 1958. Many islands at the atolls were contaminated with base-surge
and close-in fallout material from the nuclear detonations. A total of 23 tests were conducted at
Bikini Atoll. However, the debris cloud from the BRAVO test of 1 March 1954 at Bikini Atoll
went in the opposite direction of all other tests and contaminated Bikini Island, the main residence
island at Bikini Atoll, and Rongelap and Utirik Atolls to the east of Bikini.

Over the past several years, the radiological conditions at the atolls have been characterized
and documented (Robison et al. 1982 a,b; 1987; 1988). The four radionuclides still present in
quantities sufficient to contribute to dose calculations are 137Cs, 90Sr, 239+240Py and 241Am.
Robison et al. (1982b; 1987) have obtained data to evaluate all of the potential exposure pathways
(terrestrial foods, marine foods, inhalation, external gamma, catchment water and ground water).
The radionuclide 137Cs accounts for more than 90% of the estimated dose for residents resettling
the atolls and the uptake of 137Cs by terrestrial foods, with subsequent ingestion by the people,
contributes over 70% of the estimated dose. The external gamma exposure from the 137Cs decay

accounts for the remainder of the 137Cs exposure. Strontium-90 is the second most significant
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nuclide contributing to the estimated dose and the transuranic radionuclides contribute less than 5%
of the dose over 50 and 70 y.

Consequently, in recent years, considerable effort has been spent evaluating remedial
measures to reduce the uptake of 137Cs into food crops to reduce the potential dose to returning
inhabitants. The most effective of all the methods that have been evaluated is the application of
potassium (K) to the K-deficient coral soils at the atoll. This method has proved very effective in
significantly reducing the uptake of 137Cs into food crops and reducing the potential dose (Robison
and Stone 1992).

Because the ingestion of local foods from the contaminated islands is the major contributor
to the estimated dose, the model diet employed is of obvious importance.

The basis of the model diet was the survey of the Ujelang community in 1978 by the
Micronesian Legal Services Corporation (MLSC) staff and the Marshallese school teacher on
Ujelang (Robison et al. 1980). Results were obtained for women, men, teenagers, and children.
Adult intake exceeded that of teenagers and children, and the intake of local food was about 20%
greater from women than for men. The higher intake attributed to women is unexplained, and
certainly questionable. It is indicative of the acknowledged uncertainty in dietary estimates.
Nevertheless, the authors suggest that the MSLC survey provides a reasonable basis for estimating
dietary intake. Pending the availability of empirical data, it was decided to use the higher (female)
diet as the model diet, rather than attempt further speculative refinement.

Moreover, the body burdens of 137Cs predicted using the model diet and the ICRP model
for 137Cs in the human body (Leggett 1986; ICRP 1991 a,b) agree very closely with the actual
body burdens observed by whole body counting of the people living in Rongelap and Utirik Atolls
by the Brookhaven National Laboratory (Robison 1983).

137Cs metabolism model
The 137Cs metabolism model described in Ng et al. (1988) that is based on ICRP (1979) is

used to calculate body burden. For ingestion, this model reduces to a four-compartment model
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(n=4) consisting of compartments (1) stomach, (2) small intestine, (3) short-term whole body
compartment, and (4) long-term whole body compartment with turnover rates y; of 24, 6, 0.347,
and 6.30 x 10-3 d-1, respectively. The off-diagonal matrix elements of A are az1={11, 232=0.142,
and a47=0.941;. The radioactive decay rate A of 137Cs is 6.288 x 105 d-1. The matrix elements
vjj (up to a multiplicative constant for each column) are all equal to zero except for the diagonal
elements which are all equal to 1 and the off-diagonal elements y»1=-1.33, y;31=-0.02537, y41=-
0.225, y32=-0.106, and y42=-0.9009. Note that one could use a one compartment model for
137Cs to a reasonable degree of accuracy, but the 4-compartment model is used here for expository

purposes.

Ingestion

In this example, foodstuffs are the substrate in eqn. 7a, 7b, and subsequent equations
rather than soil concentrations. This substitution is made because of the availability of direct
information on the concentration of 137Cs in foodstuffs grown on Bikini Island (Robison et al.
1988). For this exercise, Marshall Islands survey data for females between the ages of 18 and 78
for the diet consisting of both imported and locally grown food (Robison et al. 1982¢) is used.
Out of the total diet of 43 locally grown foodstuffs and 31 imported foodstuffs, the overwhelming
ingestion of Cs is from coconut (copra meat, milk, and drinking-coconut meat and fluid) followed
by Pandanus fruit, breadfruit, and pork. For example for Engebi Island in Enewetak Atoll,
Robison et al. (1987) estimated that for 1990, 149 Bq d-! would be derived from copra (meat of
mature coconut) including milk (squeezed from copra), 55 from coconut fluid (free fluid in young
coconuts), 39 from drinking-coconut meat, 26 from Pandanus, 18 from breadfruit, and 18 from
pork for a total of 305 Bq d-! out of a grand total of 318 Bq d-! for all locally-grown foodstuffs.

To model ingestion, replace C(t) in eqns. 7a and 7b by J

L
J(0=2, Of) K1) (50)
j=1
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where J is the total ingestion rate of 137Cs (Bq d-1), Qj is the quantity of foodstuff j eaten ( g d-1),
Kj is the concentration of 137Cs in foodstuff j (Bq g~!) and L is the number of contaminated
foodstuffs. Note that the Q; and K; are random variables. Set G in eqn. 7a and subsequent
equations to 1. All other G; are equal to 0. These assignments for G send all ingested material to

the stomach and also keep the units consistent. For the Marshall Islands, eqn. 50 becomes

J = [Qcocomu juice T 2.67 Qurink. coc. meax] Kjuice +
[Qc. milk +prra + Qspr. coc. T Qcakc] Kcopra (51)
+ QPandanu.rKPandwuu + Qbreadfruit Kbrea:#'ruil + onrt Kpork

where the number 2.67 is the ratio of concentration of 137Cs in drinking-coconut meat to coconut
juice for Bikini data. Table 2 shows the estimated mean and standard deviation of the K variables
from Bikini Island (Robison et al. 1988) and the Q variables from the Marshallese diet survey.

In the example calculations in this section, four cases are shown: (1) Constant Input
Following Initial Random Exposure, (2) Random, (3) Mixed Random and Constant Input, and (4)
Autoregressive. It is assumed that the 4 period is 1 day and the simulation period is 5 years with

t=0 being January 1, 1987, to which all data in Robison et al. (1988) has been corrected.

Constant Input Following Initial Random Exposure case

In this case, it is assumed that the ingestion rate for each foodstuff i is chosen randomly
(sampled) at time =0 from the diet distribution defined by the diet survey by each woman in the
ensemble. Then for all days foilowing day 1, Qj(r) is fixed at Q;(0) in eqn. 51 for each woman.
Likewise, each woman randomly samples the concentration of 137Cs in each foodstuff from its
distribution as estimated by data from Bikini Island. This concentration is then maintained for each
subsequent day, i.e., K;(¢) is fixed at K;(0) in egn. 51. The first assumption assumes that each
woman has a preferred set of foodstuffs that she maintains over the course of the simulation. The

second assumption is that the same plant, or similarly contaminated plants (or animals), is
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continually harvested over the simulation. To complete the calculation, substitute egn. 51 for C¢(0)
in eqns. 11 and 12. Take E[{J(0)] by using eqns. B.2 and B.5; take D2[J(0)] by using eqns. B.6
and B.7. Values for E(K}), E(Q)), D(Kj}), and D(Q;) for each foodstuff ; are given in Table 2.
Results of calculating the mean body burden E[y3(f)+y4(s)] and uncertainty in the body burden

D{y3(t)+y4(#)] are shown in Fig. 1, as the solid line and long-dashed line, respectively.

Random case

In this case, assume that the diet for each day is chosen each day by each woman randomly
(sampled) from the diet distribution and that the concentration of 137Cs in the foodstuffs is also
sampled randomly from the distributions for Bikini Island. Thus, under these assumptions, there
is no correlation from day to day in either diet or location of food sources. So in eqn. 50 or 51
replace Q;(f) by Qj(i), where Qj(i) is the ingestion rate of foodstuff j on the ith day, Kj(r) by Ki(i),
where Kj(i) is the concentration of 137Cs in foodstuff j on the ith day, and J(f) by J;. Substitute J;
into egn. 19 for C; for calculating the unéertainty of the body burdens in the Random case with og
the same as in the Constant Input case. The results of calculating D[y3(#)+y4(r)] is plotted in Fig.1
as the dotted line. Note that the expectation for the Random case is the same as that calculated for
the Constant Input case. While the example of 137Cs ingestion at Bikini Island does not strictly fit
the conditions for either the Rapid or Slow Metabolism limit stated above, weak forms of both
these limits pertain to this problem. First note that the p4 terms dominate in eqns. 12 and 19. The
elimination rate for the long-term whole body compartment (4) is such that p44 << 1 and
H4T >> 1 for T equal to 3 to 5 years. These relations can be rewritten as A << (14=1/p4) << T
where 74 is the residence time of 137Cs in the long-term whole body compartment. That is, the
residence time is much greater than the time interval A and much less than the simulation time T.

Under these conditions eqns. 12 and 19 have the ratio

ayk.Random) OR ALy A
=R 4 A [ L -0056 52
u)’k.Consram Input) Oci 2 27y 2N, ( )
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where N4 is the number of intervals A in residence time 4.

Case of Mixed Random and Constant Input Following Initial Random Sample

This case has two assumptions. The first is that the women have strong preferences in
their diet, such that, for the consumption of food items, the Constant Input case is being followed
and Qj(r) is denoted by Q;(0). The second is that when getting foodstuffs for day-to-day use, the
foodstuffs are collected randomly each day anywhere on the whole island, or if food is only taken
from private land then the contamination in each islander's land holding is representative for that of
the whole island. That is, the conditions of the Random case are assumed to calculate the
concentration of 137Cs in the food items. K;(r) is denoted by Kj(i) on the ith day. Substitute J;

for C;in eqn. C.4a. Then use eqns. B.6 and B.7 to find

L
Dy aixed) =3, [DUGIDYK)ISE +DHQ) EAKWE +EAQIDYK)SE]  (53)

J=1

where S2 is defined in eqn. C.4c and W} is defined in eqn. C.2d . Using egn. 53, the uncertainty
in the Mixed case D[y3(r)+y4(#)] is plotted in Fig. 1 as the short-dashed line.

Autoregressive case

In the Autoregressive case, it is assumed that the total intake for day i, J;, is correlated to
the previous day's total intake with a correlation coefficient a. That is, J; is substituted for C; in
eqns. 34, 35, etc. The Autoregressive (or Partially Correlated) assumption can pertain to those
situations in which the diet for each woman in the ensemble is similar from day-to-day yet has
some random variation in it. Also, if there were some time-varying bias in selecting foodstuffs,
then the autoregressive assumption might apply. For example, if there were contamination
gradients and vegetation were harvested along the gradients over time, then the autoregressive

assumption might be a good representation.
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Use the stationary conditions to calculate the Autoregressive case results. Eqn. 38a assures
that the mean of the body burden yy in the Autoregressive case will be the same as the mean for the
Constant Input case and for the Random case. To calculate the uncertainty in the Autoregressive
case, the parameter 04 is chosen to be the same as og (or o¢cy). The daily autocorrelation «
remains as a free parameter. In Fig. 1, the uncertainty for the body burden D[y3(f)+y4(s)] is
shown as a mixed short-long dashed line using eqn. 39. For expository purposes, a correlation of
a=0.5, halfway between 0 (pure Random) and 1 (Constant Input) is chosen. Because ais a free
parameter that can take on any value between 0 and 1, Fig. 2 shows the behavior of the uncertainty
of the body burden in the Autoregressive case as a function of . The uncertainty D[y3(£)+y4(s)] is
plotted at a fixed time (#=3 yr). Note that as a approaches 0, the uncertainty approaches that of the
pure Random case and as o approaches 1, the uncertainty approaches that of the Constant Input
case. Egn. 39 might be applied in a dose assessment by using « derived from observations of
ingestion. Another possibility for applying eqn. 39 is to find that & which optimizes the fit eqn. 39
to observed uncertainties in body burdens. As stated above, the ratio of eqn. 12 and 39 can be

simplified to
lxykﬁuloregre::ive) O¢ Aﬂ4 (1+a).A +aj) 1
- , V =A/ =/\/( ) =0.097 (54
Dlyx.Constant Inpul) oci(1-a) 2 (1- @) 274 (1-a)2N4 (54)

by applying p4d << 1 and u4T >> | for T equal to 3 to 5 years, the stationary condition

O0e2=042(1-02), and o4=0(].

Discussion

One sces by egns. 23 and 24 that the expectation of the body burdens and doses,
respectively, in the Constant Input and Random cases are equal. Recall that in the Constant Input
case, every Man in an ensemble of Men samples the environment once at the beginning of a T-year

exposure. In the Random case, every Man samples the environment several times in the T-year
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time span with each sample being independent of all others. So, averaged over the ensemble of
Men, the same average for body burden and for dose is obtained in both cases. In the Random
case, the number of samples is N times that of the Constant Input case.

In comparing the Random case with the Constant Input case in the Rapid Metabolism limit,
it was found above that the uncertainty in the body burdens and doses is the same in both cases,
proportional to the uncertainty in the distribution of the radionuclide in the soil, and independent of
the number of samples taken. In the Random case, in which many samples per simulation period
are made, the Rapid Metabolism has the effect of purging one sample from the system before the
end of the next time period. Thus, only the input during the last A interval is important in
determining the body burden. In the Rapid Metabolism and rapid decay limit in the Random case,
only the first A interval is important in determining the dose. Thus, only one sample determines
the statistics of the body burden and dose. So, the statistics of the Random and Constant Input
cases are the same in these limits. On the other hand, in the Slow Metabolism limit, the effect of
each sampling persists for the duration of the run. In this limit, for the same uncertainty for the
radionuclide concentration in the soil for both the Random and Constant Input cases, one finds that
the uncertainties in the body burdens and doses in the Random case is less than those of the
Constant Input case by a factor of N2 and (3N/4)1/2, respectively. So, by sampling many times,
for which the content of the sampling persists in the system, the variance in the content of the
system decreases by a factor of N. The dependence of the uncertainty on N in the Slow
Metabolism limit is analogous to that of the standard error of the mean of N if N were to represent
the number of samples used to estimate the mean. Now, if one wants to simulate the effect of the
multiple samples in situations in which the environment is sampled only once at the beginning of
the run, one may do so by decreasing the uncertainty in the soil distribution by N1/2 for body
burdens or (3N/4)!/2 for doses. That is, one can use the model in the constant input mode to
simulate a variable input of multiple samples if it is known that the multiple sampling occurs in N
discrete, equal time intervals. Note that the factor of 31/2/2 arises from the definition of dose as

proportional to the time integral of body burden.
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Now consider the Autoregressive case. The Autoregressive case corresponds to real-world
situations in which each Man makes N successive samples of the environment over the course
[0,T] of the simulation, but for which each sample is not independent of the previous samples.
Instead, each sample is correlated with the previous sample with a correlation coefficient of o,
correlated with the second previous sample by a2, etc. An example might be that the Man lives in
an environment for which the radionuclide contamination is a spatial function with small spatial
variation over the distances of possible moves by the Man. In this example, the function of spatial
contamination would have small-scale, spatial noise associated with it. If the Man moves a small
distance in this environment N times, his exposure could approximate the conditions of the
Autoregressive case. Alternatively, in an occupational setting, N reassignments during a working
career in which each reassignment had some similarity with the previous assignment and some new
additional features could also approximate the conditions of the Autoregressive case.

The expectation of the body burdens and of the doses for the Constant Input case are equal
to the expectations in the Autoregressivé case if c¢y equals c4 and c4 equals €, (1-a)~1. For the
Rapid Metabolism and rapid decay limit, the expectation of the dose in the Constant Input case is
equal to the expectation in the Autoregressive case if c4 equals ccy even under nonstationary
conditions. In the Rapid Metabolism and rapid decay limit the initial sample is the most important.
In the Slow Metabolism limit, the initial sample c4 in the Autoregressive case becomes increasingly
unimportant as N gets large because aV (the correlation of the last sample with c4) is small for
a < 1. Hence, the mean of the noise term in the sampling is the important factor in determining
final body burdens. But because any noise introduced in any sampling persists into further time
intervals, the mean of the sampled noise is inflated by a factor of (1-a)-1.

In the Rapid Metabolism limit for large values of N, the uncertainty of the body burden in
the Autoregressive case is equal to the uncertainty in the Constant Input case multiplied by a factor
of o¢ ocr ~1(1-a?)-172, which becomes 1 for stationary input and for o¢c=04. One finds that oy,
the uncertainty in the first sample of the soil concentration, is unimportant in determining the

uncertainty in the body burden in the Autoregressive case. However, in the Rapid Metabolism and
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rapid decay limit, the uncertainty of the dose in the Autoregressive case is related to the uncertainty
of the dose in the Constant Input case by the factor 04/0¢c;. Hence, gy is important to the dose in
this limit. Also, note that for large N, the asymptotic expressions for the uncertainty in both the
body burdens and doses in the Autoregressive case in the Rapid limit is independent of N. The
radionuclide activity taken up in each to the N time periods is turned over before the end of the next
period. Thus, each sample’s impact on the final burden due to persistence of radionuclide burden
is minimal, and the uncertainty is independent of the number of samples. However, the value of

the radionuclide sampled near the end of the simulation depends on previous samples because of

the autocorrelation function aX. The uncertainty in the body burden for the Autoregressive case is
increased by a factor of (1-a2)~172 for nonstationary input because of this reduced independence.
But for stationary input, the uncertainty of the body burden in the Constant Input case matches the
uncertainty of the Autoregressive case. However, in the Rapid Metabolism and rapid decay limit,
the uncertainty in the dose is determined solely by the uncertainty in the initial exposure oy.

In the Slow Metabolism limit for large N, the uncertainty in the body burdens and doses for
the Autoregressive case is equal to the uncertainty in the Constant Input case multiplied by a factor
of Oeac {(1~a)(NVD}-1 and o¢ o/t [(1-a)(NVD]-1 [(2/(31/2)], respectively. For stationary
input and o¢cr=04, these factors become {(1+a)/[N(1-a)]}~-1/2 and {4(1+a)/[3N(1-a)]}-1/2,
respectively. Because of the Slow Metabolism, each sampled radionuclide concentration persists
in the body burden. This persistence decreases the uncertainty in the final body burden by the
factor of N1/2. Again, Slow Metabolism produces a dependence on N similar to that of the
standard error. The effect of the correlation of the samples from one time period to the next
reduces the randomness between time intervals and increases the uncertainty in the body burden by
the factor of [(1+a)/(1-a)~172. To force the Constant Input case to match the uncertainty in the
body burdens or the dose in the Autoregressive case requires that one multiplies the uncertainty in
the soil concentration by {(1+a)/(1-a)N)]-'/2 or {4(1+a)/[3(1-a)N]}-1/2, respectively. The

difference of a factor of 2/(31/2) between these two expressions arises from the definition of dose

as an integral of body burden.
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The expressions derived in this paper for body burden and dose in the various cases are
sufficiently complicated that it is difficult to understand them except in special limits or by graphical
display in specific applications. In an example application, the mean and standard deviation in the
body burden of 137Cs in aduit females living at Bikini Island is shown for the four cases of
Constant Input Following Initial Random Exposure, Random, Mixed Random and Constant Input,
and Autoregressive. The means for all four cases are the same, including the Autoregressive case
for which the condition of stationary input is necessary to achieve equality. The uncertainty for the
case of Constant Input is about 90% that of the mean at 3 years exposure. The uncertainties of the
Mixed, Random, and Autoregressive cases are 75, 5.6, and 9.6%, respectively, of the uncertainty
of the Constant Input case. The Random case uncertainty is sharply reduced because a weak form
of both the Slow and Rapid Metabolism limit applies in which p44 << 1 (the residence time of
137Cs in the long-term whole body compartment is much greater than A) and p4T >> 1 (the
residence time is much less than T) where the fourth compartment dominates the whole-body body
burden. These conditions are better written A<<1/u4<<T, which indicates that the residence time
of 137Cs in compartment 4 is much greater than the randomizing time-interval A and much less
than the total simulation time T (3 to 5 years). In this limit, the reduction factors of the
uncertainties are ~(1144A/2)172 and ~{ 4A(1+a)/[2(1-a)]} 172 for the Random and Autoregressive
cases, respectively. Thus, the effect of the sampling for each A time period reduces the uncertainty
because of mixing in the compartment of the various sampled quantities from each A time interval
during the residence time. However, in the Autoregressive case, because of autocorrelation, the
level of input tends to persist and this persistence increases the uncertainty over that of the purely
Random case by a factor of [(1+a)/(1-a)]/2. The uncertainty in the Autoregressive case (eqn.
39) is plotted in Fig. 2 for all a@. The uncertainty in the figure shows a gradual increase from the
purely Random case (a=0) up until about &=0.9, followed by a rapid rise to the purely Constant
Input case at a=1. Note that any value of the uncertainty, between that for the Random case and

the Constant Input case, can be simulated by an appropriate choice of a. Thus, one could simulate

phenomenologically very complicated situations of inadequately known input statistics by the
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Autoregressive case with a appropriately chosen so that the statistics of the Autoregressive output
match those of the complicated case.

It should be noted that the underlying shapes of the distributions have not been assumed or
derived. For example, the results of Kercher and Anspaugh (1991) suggested that the NAEG
model produced lognormal distributions for the body burden of Pu. Only the means and variance,
or first and second moments, have been used in this paper. For complicated models of body
burdens and doses, it is still very useful to use a Monte Carlo method, or one of its variations, to

find the form or shape of the distribution.
Conclusion

The results of this paper indicate that the rate of metabolism has an important effect on the
uncertainty in body burdens of radionuclides and doses in situations in which the exposure to the
radionuclide changes over time in a stochastic way. Slow Metabolism tends to reduce uncertainty
relative to those situations in which the soil concentration is sampled once and then held constant.
‘The results also indicate that under Slow Metabolism, as serial autocorrelation of inputs or uptake
rate increases, the uncertainty in body burden and dose also increases. The condition of high initial
inputs tending to remain high and low initial inputs tending to remain low increases the uncertainty.
For the example of ingestion of 137Cs on Bikini Island, it was found that for intake chosen
randomly daily based on diet and 137Cs concentration distributions (Random case), the body
burden was a factor of 18 times less than that for the case of intake chosen randomly at the
beginning and then fixed (Constant Input). The uncertainty of the body burden in the
Autoregressive case went smoothly between the uncertainties of body burden for the two extreme
cases (Constant Input and Random) as the correlation coefficient a varied from 0 (Random) to 1
(Constant Input). These results suggest that complicated cases for which observed uncertainties lie

between the two extreme cases can be treated phenomenologically by fitting the Autoregressive
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case to the observations. While care must be used in"this approach, it may prove to be a useful
diagnostic tool.

If enough is known about the sampling over the simulation period, then the uncertainty
distribution for the Constant Input case can be adjusted so that simulations using constant inputs
can simulate the uncertainty of the body burdens or doses in the Random or Autoregressive cases.
In particular, one needs to know the number of sampling periods, they must be the same for all
members of the ensemble, and they must be of equal length. One needs to know or be able to
estimate the degree of autocorrelation between the successive exposures. Finally, an estimate of

the mean and uncertainty in the random portion of the exposure must be made.
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Appendix A. Properties of the metabolic transfer matrix
The matrix A’ defined by ICRP(1979) is a lower triangular matrix
aij=0 for i<j (A.1)

whose diagonal elements are in the form

ajij=~Hi-A (A.2)

where (; is the biological turnover rate of the radionuclide in the ith compartment. Thus, it will be

convenient to introduce a new matrix A of just the biological parameters defined by
A'=A-2I (A.3)

where I is the identity matrix. The jth eigenvalues of A’ is denoted by A; and is chosen so that the
jth eigenvalue of A is -lj. Kercher (1983) discusses the solution of linear transport models of the
form of eqn. 1 using eigenvalues and eigenvectors. Let us assume that the eigenvalues of A’ are
discrete (not degenerate) so that the eigenvectors of A' are linearly independent. Denoting the jth

eigenvector of A' as W, the eigen equation for A'is
Ay = Ay (A.4)
Eqn. A.1 implies that the eigenvalues of A’ are the diagonal matrix elements so that
Ai=—pi—-A (A.5)

which is substituted along with eqn. A.3 into eqn. A.4 to get

43



Ay =-py . (A.6)

Thus the eigenvectors of A are the eigenvectors of A' and the eigenvalues of A are —y;. Eqn. A.4
can be written as

A'Y=¥A (A7)

where W is a matrix with elements ¥ = y/; and A is the diagonal matrix with diagonal elements
Ajj = 2;. Note that A =0 for i #j. Because the eigenvectors of A’ are linearly independent, -1

exists and eqn. A.7 implies

v 'AW=A (A.8)
and in fact
v AAY Y = AA) (A.9)
and for A one finds
vlay=Q (A.10)

where €2 is the diagonal matrix with diagonal elements £2j; = - yj.and £2;; = 0 for izj.
Appendix B. Properties of uncertainty distributions
In this paper, use the usual functions to characterize the distribution of random variables,

namely, the mean and standard deviation. For a random variable X, take the usual definitions of

the expectation function E(X) or mean of X (Cramer 1955) such that E(X) has the properties
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HaX +b)=aBX) +b (B.1)

and

k
E(i a; x,-) =Y, a BX;) (B.2)
i=1

i=1
where a and b are scalars. The standard deviation function D(X) is given by
DYX)= o = (X - BAX)P) = Hx ) - EX) (B.3)

with the property
DaX +b)= lal Dx) . (B.4)

Use the result that if the random variables X; are independent then

k k
E(E X.')= ,IJ EX) (B.5)
and
k k
D{Z a.-X,-): Za,z Dz(X,') . (B6)
=1 B=1

To derive eqn. B.6, one uses eqn. B.5. Furthermore, for X and Y independent random variables

and using eqns. B.3 and B.5, one finds that

DAX Y)=D¥X) D{Y)+ E4X) D{Y)+E{Y)DiX) . (B.7)
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Appendix C. Calculations for the Random case

To characterize the distribution of y, take the expectation of eqn. 17 to get

Hy{T)) = e~”[eu(_ A—l)(r-eM)i HC) e-aid G:L . (C.1)

i=1

Assume that each sampling is independent but from the same distribution (nonseasonal), hence
E(C;) = cg where cp is the mean soil concentration with radioactive decay removed. So eqn, C.1

is simplified to

Hy(T))= e—“[eAT(—A—l)(I-eM) oy eais Gl (C.2a)

i=1

= e‘“'[e“'(— A“)(I - eAA) CR (e'AA ~ e~AdN+ 1)) (I _eAdft G ]k . (C.2b)
This expression simplifies to eqn. 18 in the text, i.e.,

EHy(T)) = cr W{T) (C.2¢)

where

WHT) =eA-YeAT-1) G, . (C.2d)

Now consider the standard deviation for the Random case. Begin with eqn. 7b and employ

the Random case assumptions outlined above so that eqn. 7b becomes

n N ia
YD) = 3, WyehT Y Ci ¥ G’f e-(e2)e g (C.3a)
=1 i=1 G-1)a
n _ _ +A)a N
= Z Py ek T lpjll G l_e('z’__)__ Z C; e-(+d)ai (C.3b)
jd=1 (—lj - l) i=1
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Interchange the summations in eqn. C.3b and take D2 of both sides of the equation. Then use eqn.
B.6 because the C; are independent. One finds

DYy = ZDZ(C.)LZ W e G,“T"f’—:;-‘!) (M)A']l. (C.4a)
i=1 -

Using D2(C;) = og?, perform the sum over i in eqn. C.4a, and also use eqn. A.5 to find

DXyAT)) = o% Sk (C.4b)
where

n

S2=e-2AT Y W W et mT ¥ ¥ GG,
Jdmr=1
(1- e-#A|1 - e‘l»‘ﬂA) (1 - eli+pa)T) \ (C.4c)
Hj Hom (e-tw+mma—1)|

Rapid Metabolism limit

Let us first consider the variance of the body burdens. In the Rapid Metabolism limit, all 4;
are large such that g; A >> 1. In this limit, the expression in the curly brackets in eqn. C.4c

approaches
(v deq cae = {1 il el pm)T (C.5)
so that eqn C.4b approaches

D2(yk)_>o-2€—2lT2 ['{’kju 11 GI] i ["f’k,,. pm ‘f’m,G] (C.6a)

Jjl=1 mr=1
— cge2AT[-A" G] . (C.6b)

The square root of eqn. C.6b is shown in the text, eqn. 25.
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Slow Metabolism limit
Now consider the limit of Slow Metabolism. In this limit, all the y; are small so
H;i T << 1. First, let us examine the uncertainty in the body burdens. In this limit, egn. C.4b

goes to

n
Dy)» R e AT Y Wy Wi et TV WL GG A2 L (C7a)
A

jlmr=1

> oﬁe-“-TTWzG,f : (C.7b)

The square root of eqn. C.7b is shown in the text as eqn. 27. Note that eqn. 27 and 28 imply that
to force D(yk, Constant Inpur) to be equal to D(yk,Random) requires that one set ocy to or/NN.
Consider next the uncertainty in the dose. In addition to the Slow Metabolism limit,

assume that AT << 1. In this limit, the variance of the dose in the Random case (eqn. 22)

approaches
d - 1. ASNIN-1(N+1
DYH)— 03 S BBy Fin Gm¥r G AN 3‘ 1) (c.89)
Jhpmag=1
2 74
—03(B G]k‘—3N . (C.8b)

The square root of eqn. C.8b is given in eqn. 30. Eqn. 31 implies that to force
D(Hy, Constant Inpur) 10 equal D(Hy, Random) requires that one set oy to 20g/(3N)1/2. Note that one

can not force equality for both body burden and dose, simultaneously.

Appendix D. Autocorrelation in the Autoregressive model

To give meaning to the parameter « introduced in eqn. 34b, consider the autocorrelation

function defined for a random variable X; as
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_CoUX X9 _ E{(X; - HX))(X - BX 11 9))
A == = HX— BX)) (X~ X)) (D.1a)

So, the autocorrelation function of the C; defined by eqn. 34b is found by substituting eqn. 35

into the definitions of the covariance and variance. For i>1

Cov(CiCiid ={{ a Y Cy—ca) + 2‘: aAg- Em)}

‘, F2 (D.1b)
{a“*’(Cl —ca)+ Y, aibg— e,,,)}:l :
=2
Now note that since C is independent of €;, use eqn. B.5 to find
E{(Cl - CA) (ej_ £m)] = E(Cl - CA) E(Ej"' Em) =0 . (D.Z)
So that for > 1
Cov(CiCindd = A 2HH(C - caP] + Y, o ¥ H(e; - ) (D.3a)
2
i
= azj—2+koi + o2 am‘+k2 oY (D.3b)
2
. A1) _
= a”‘“"[oﬁ + o2 a‘__l] . (D.3¢)
1-a?
Following the same procedure, the variance for i > 1 is given by
: Ai-1) _
Var(C)= o2 [oﬁ + o2 ET——Z—I—} . (D.4)
-

So
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i1 )
a""z""[oﬁ+ ngﬁ]
1-a® |_ i1, (D.5)
az‘.‘2|:0'}+ O'g a—z(l—l)_. 1]

plik)=
1-0o2

The derivation for i =1 is even simpler

Cov(C,C144) = E{(Cl - cA){ af(Cy —ca) + lik al+tg - e,,,)}] (D.6a)

= a* H(Ci - caf] = a* :ﬁz (D.6b)

and
Var(C)) =0} . (D.6c)

So
p(L.k) = o* . (D.7)

Therefore, for all i and & one finds
plik) = a* for i1, k20 . (D.8)
Appendix E. Calculations in the Autoregressive case

To calculate the uncertainty in the distribution of yi in the Autoregressive case, begin with

eqn. C.3b, which is rewritten as

n N
YT = Y, HyedT ' Gt _;#[Cle“’“ 2 c,-ewid]

M=1 i=2 (E.1)

and substitute eqn. 35 for C; to get
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n _ —e-HA
y(T): Z ‘{’kje}‘ir "Pﬂl G(l—L—[Cl eHA
jd=1" J
N _ i _
+ Z a-iCy + Z atle |etid | . (E.2)
i=2 r=2

Then simplify by carefully interchanging summations and summing over i to get

ul - —e-HA —aNenT
yT) = Y WijehT ¥ Gl emp Lo et
jd=1 d l-oekt (E.3)
N — N7+l L uA(N-r+1)
+ E,e#i’Al a ¢ ]
r=2 l_ae#)d

Take D2 of both sides of eqn. E.3 and since all the random variables in eqn. E.3 are independent,

apply eqn. B.6 to get

n - —e-HA —aNewT 2
D(yi) = Z kaje;,.r .{lel Gll e el‘ﬁl ae :] D¥(C))
il=1 u] l—ae”id (E4)

N n - N-i+l _i

_ —eHA . 1- HA(N=i+1)

+ Y DYe)| T WierT Wy Gl epia Lo ]’
i=2 il=1 Hj l-aekA

Using D2(C}) = 042 and D2(g;) = 0¢?, perform the sum over i and this equation becomes eqn. 39.
Rapid Metabolism limit

In the limit of Rapid Metabolism, the expectation value of the body burden y for the

Constant Input case, eqn. 11, approaches
E()’k. Constant Input) — AT cci ["A_l G]k (ES)

whereas the expectation value for the Autoregressive case goes to
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E()'k. Autartgre::ive) —|aN+ anm_'_—a)'(l - aN_l) e-*T CA [—A“l G]k . (E6)

These two equations are combined to produce eqn. 43.
Now consider the uncertainty of the body burden in the Rapid Metabolism limit. In this
limit, as before, the uncertainty of the Constant Input case (eqn. 12) approaches eqn. 19 with o¢y

substituted for o, and the uncertainty in the Autoregressive case approaches

Dz(yk. Aluoregre.uive) — e~ T 0’% a2(N_l) + O% (1 — az(N_l)) ][—A—l GR . (E.7)
o2 (1-a?)

Combining these two results one arrives at eqn. 44 in the text.

To calculate the expectation of the dose Hy in the Rapid Metabolism limit, assume that the
decay is rapid, too, i.e., assume AA >> 1. Then the expectation of the dose in the Autoregressive
case approaches eqn. 26 if c4 is substituted for ¢y and the expectation of the dose in the Constant
Input case in the same limit also approaches eqn. 26 if ccy is substituted for g¢y. These results
combine to produce equality of E(Hk Aworegressive) and E(Hy Random) for ccr=cA.

Now consider the uncertainty in the dose for the Rapid Metabolism limit. In this limit, eqgn.

42a approaches

Dz(Hk. Autoregre::ive) —);—3' [B (—A+A. I)_l G]: (E8)

just as the Constant Input case , eqn. 15, approaches egn. 26. These two equations show equality

of D(Hk’ Constant [npul) and D(Huu[oregrejsive) in the Rapld Metabolism limit fOl‘ OA=0(CI.
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Slow Metabolism limit

In the limit of Slow Metabolism for the radionuclide in question, the expectation value of

the body burden yy for Constant Input case, eqn. 11, approaches eqn. 28 if one replaces ocy by

ccy and the expectation value of the body burden in the Autoregressive case, eqn. 37, approaches

Em _l_l—aN _ Em
cA(l—a)+N l—a( cA(l-a))

E(yk, Auroregre:sive) - e-AT caT Gy . (E.g)

Use these results to get eqn. 45.
To calculate the uncertainty in the body burden y in the Slow Metabolism limit for the
Constant Input case take the limit of eqn. 12 to find eqn. 28, as before, and the limit for the

Autoregressive case, eqn. 39 becomes

' 1 -oM)? o? 1-aV

DXy, Autoregressive 1 £ -1- 1-aN+2

k, Autoreg e.mv) N2( - + - AN2(1_a)2 {N 1 (]_..(12 ( a’ + a)
ol e-2M T2 G} . (E.10)

These two results can be combined to produce eqn. 46 in the text. Note that in the limit of large N,

under stationary conditions, to force DZ(Yk,Constaru Inpus) t0 equal D2(yuu,oregre ssive) requires that
ocr be set to o {(1+a)/[N(1-a)]} 172,

The expectation of the dose for the Constant Input case in the Slow Metabolism (and decay)

limit approaches

BHk, Constant tnpur) = cc1[B Gk 1;— (E.11)

and the expectation of the dose in the Autoregressive case approaches the same expression if

€n/(1-0) is substituted for c¢y. Use these two results to produce eqn. 48.
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Recall that the uncertainty of the dose for the Constant Input case in the Slow Metabolism
(and decay) limit, eqn. 15 approaches eqn. 31 and the uncertainty of the dose for the

Autoregresseive case , eqn. 42a, in this limit approaches

4 :
Dz(Hk. Autoregressive) - a—i‘%[B G]% ETF . (E.12)

Combining these results, one gets eqn. 49a which relates the uncertainties of the two doses. To
force the variance of Hi Constant Inpus t0 equal that of Hi Autoregressive requires that one sets ocy to
o4 (4(1+a)/[3N(1-a)] }172. Note that this differs from the result for the body burden by a factor of
2/31/2, Thus to adjust o¢ to force the uncertainty of Constant Input dose to match the uncertainty

of the Autoregressive dose, the uncertainties of the body burdens will differ.
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Table 1. Glossary of symbols with the first equation in which the symbol appears and a brief

description of the symbol.
Symbol First Description
Eqn.
ajj 1 Constant coefficient of transfer from compartment j to i (d-1) for j different

By

Bi
cA
cHC
CR

Cs

Cs

Ta

35b
34

13a
34
38
11
15

14

12

from i. For j and i the same, negative of the sum of radioactive decay rate and
total elimination rate from compartment i.

Matrix of biological tunover rates and transfer coefficients (d-1).

Matrix A is matrix A’ with radioactive decay rate removed.

Matrix of matrix elements aj;

Correlation of soil exposure C; to Cj41 in Autoregressive case
Autocorrelation coefficient of X; and X;_; in general linear model of
autocorrelation

Conversion factor of burden-to-dose that is proportional to SEE coefficients
for the kth target organ by the jth source organ

Matrix of Bjj matrix elements

Correlation coefficient of X; and Z;_; in general model of autocorrelation

Mean soil concentration of initial exposure in Autoregressive case (Bq cm-3)
Mean soil concentration for initial exposure in Constant Input case (Bq cm3)
Mean soil concentration for exposures in Random case (Bq cm=3)

Soil concentration of radionuclide (Bq cm~3)

Random variable of soil concentration during exposure period i in Random and
Autoregressive cases (Bq cm3)

Random variable of soil concentration with dependence on radioactive decay
removed (Bq cm=3)

Standard deviation function
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€i

€m

14

11

35b

38

A9

A7

-

Length of time subintervals for constant exposures in Random and
Autoregressive cases (d)

Expectation function

Random or uncorrelated stochastic portion of soil exposure C; in
Autoregressive case (Bq cm—3) or random portion of daily intake of 137Cs in
Autoregressive case of Bikini Island example (Bq d-1)

Mean of random or uncorrelated portion of soil exposure in Autoregressive
case (Bq cm—3) or mean of random portion of daily intake of 137Cs in Bikini
Island example (Bq d-1).

Arbitrary function of matrix A that is transformed to same function of
eigenvalue matrix under the similarity transformation on A performed by the
eigenvector matrix

Intake (inhalation or ingestion) of radionuclide to compartment i (Bq d-1)
Vector of n components of F;

Transfer function that gives radionuclide delivered to ith body organ from soil
concentration (Bq(intake) d-1 Bq(soil)~! cm3)

Vector of G; components

Cumulative dose to kth organ (Sv)

Vector form of cumulative dose with vector element Hy

Identity matrix

Total ingestion rate of 137Cs (Bq d-1) at time ¢ in Bikini example.
Concentration of 137Cs (Bq g-1) in foodstuff j at time ¢

Radioactive decay rate (d-1)

Eigenvalue i of matrix A' (d-1) and the negative of the sum of the radioactive
decay rate and biological turnover rate of compartment i

Diagonal matirx of eigenvalues 4;
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i

¥

Qi(®)

p(i.k)
Sk2

OA

O¢

OR

16

14

52

A.10

42a

7o

AT

62

42a

D.la
C.4c

39

39

12

16

-

Function of scalar or matrix used for repetitive patterns to simplify complicated-
expression

Biological turnover rate of compartment i and negative of eigenvalue i of matrix
A (d-1)

Number of body compartments

Number of exposure intervals in Random and Autoregressive cases

Number of exposure intervals 4 in residence time 14 for Bikini example.
Diagonal matrix with diagonal elements p;

Function of scalar used for repetitive patterns to simplify complicated
expressions

Matrix element given by the kth element of the jth eigenvector of matrices A
and A'

Matrix of eigenvectors.with matrix elements ‘¥j;

Quantity of foodstuff j consumed per day at time ¢ (g d-1)

Function of scalar used for repetitive patterns to simplify complicated
expressions

Correlation coefficient of C; and C;,x

Variance of body burden of compartment k at time T in Random case divided
by or2.

Standard deviation of soil concentration in initial exposure in the
Autoregressive case (Bq cm-3)

Standard deviation of random or uncorrelated portion of soil exposure in the
Autoregressive case (Bq cm-3)

Standard deviation of soil concentration for initial exposure in Constant Input
case (Bq cm-3)

Standard deviation of soil concentration in Random case (Bqcm3)

Time variable (d)
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C.2d

34

34

-

Total period of exposure for cumulative dose (d)

Residence time of radionuclide in compartment i (d).

Expectation of body burden for compartment k at time T in Random case
divided by cg

Dependent random variable in general linear model of autocorrelation

Body burden of ith body organ or component (Bq)

Vector of n components of y;

Independent random variable in uncorrelated stochastic portion of random

variable X; in general linear model of autocorrelation
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Table 2. Statistics of measured concentrations of Bikini Island foodstuffs. Statistics of diet survey

results of Marshallese women age 18 to 78.

Foodstuff j Mean of Q; Standard Mean of K; Standard
(gd-1) Deviationof O (Bq g™!) Deviation of K;
(gd-D (Bq g1

Breadfruit 27 38 0.59 0.33
Cake from 12 8.6

coconut?
Coconut juice 99 98 1.6 1.3
Coconut milka2 52 66
Copra 12 27 8.2 5.3
Drink. coconut 32 65

meat®
Sprouted 7.8 22

coconut?
Pandanus 8.7 17 6.7 5.4
Pork 5.7 10 8.5 6.6

dUse the same X statistics as copra

bStatistics of K are 2.67 times those of coconut juice for Bikini Island.
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Figure Captions

Figure 1. Calculated mean and uncertainties (standard deviations) of total body burden of 137Cs for
women on Bikini Island. January 1, 1987 corresponds to t=0. Mean for all cases is the same.
Four different cases of exposure are Constant Input Following Initial Random Exposure, Random,

Mixed Random and Constant Input, and Autoregressive with a=0.5.

Figure 2. Uncertainty (standard deviation) of the total body burden of 137Cs in the Autoregressive
case for women on Bikini Island after three years of exposure. The uncertainty is plotted as a
function of the daily autocorrelation () of total daily ingestion rate of 137Cs. Note that as &
approaches 0, the uncertainty approaches that for the Random case; and as « approaches 1, the

uncertainty approaches that for the Constant Input case. Also, note the rapid rise of of the

uncertainty for & greater than 0.9.
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